

Carbon loss associated with land-use change in tropical peatlands: methods and estimates

Kristell Hergoualc'h

THINKING beyond the canopy

29 September 2011 – REDD-ALERT annual meeting, Da Lat, Vietnam

Methodological approaches

Carbon loss estimates

Literature review

- Southeast Asian peatlands
- C stocks, peat C fluxes
- 56 studies

2 publications

- Murdiyarso D, Hergoualc'h K, Verchot LV (2010) Opportunities for reducing greenhouse gas emissions tropical peatlands. PNAS 107, 19655-19660
- Hergoualc'h K., Verchot L.V. (2010) Stocks and fluxes of carbon associated with land-use change in Southeast Asian tropical peatlands: a review. Submitted to Global Biochemical Cycles.

Carbon loss from wildfires

Stock change approach

Land-use type before fire	C stock loss (Mg C ha ⁻¹)		
	Burnt vegetation	Burnt peat	Total
Intact forest	152 ± 36	285 ± 67	436 ± 77
Logged forest	35 ± 36	285 ± 67	320 ± 77
Oil palm plantation	32 ± 9	285 ± 67	316 ± 67
Acacia plantation	28 ± 2	285 ± 67	313 ± 68

C loss: 65 – 90% from peat

Peat forest conversion to oil palm

Combination of the 2 methodological approaches

Stock change approach: Aboveground biomass C loss Flux change approach: Peat C loss

Peat C stock changes:Difficulties & Limits

- Peat depth (up to 20 m), compaction, limited number profiles
- Presence logs, high water table level \Rightarrow bulk density?
- How to select the right 'before land use change' site?
- How to address peat compaction, shrinkage & decomposition caused by land-use change?

C fluxes into and out of the peat

Heterotrophic soil respiration = peat oxidation = peat decomposition Heterotrophic soil respiration = Total soil respiration - root respiration

Peat C balances in the forest and in the oil palm plantation

Peat forest conversion to oil palm plantation

Conclusions

- Very large carbon loss
- C loss: 60-90% from the peat
- ⇒ **REDD** mechanism should **prioritize peat swamp forests**
- Gaps knowledge on C cycle in tropical peatlands
- ⇒ Greenhouse gas accounting methods: heterotrophic soil respiration (N inputs), allometric models specific to peat swamp forests
- ●[™]General misunderstanding :

Peat heterotrophic soil respiration \neq **Peat C loss**

- N₂O: Global warming potential 300
- ⇒ Increase in N₂O emissions due to land-use change in tropical peatlands?

www.cifor.cgiar.org

CIFOR advances human well-being, environmental conservation, and equity by conducting research to inform policies and practices that affect forests in developing countries.

Thank yo

THINKING beyond the canopy